109 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Object Detection and Recognition for Visually Impaired People

    Full text link
    Object detection plays a very important role in many applications such as image retrieval, surveillance, robot navigation, wayfinding, etc. In this thesis, we propose different approaches to detect indoor signage, stairs and pedestrians. In the first chapter we introduce some related work in this field. In the second chapter, we introduced a new method to detect the indoor signage to help blind people find their destination in unfamiliar environments. Our method first extracts the attended areas by using a saliency map. Then the signage is detected in the attended areas by using bipartite graph matching. The proposed method can handle multiple signage detection. Experimental results on our collected indoor signage dataset demonstrate the effectiveness and efficiency of our proposed method. Furthermore, saliency maps could eliminate the interference information and improve the accuracy of the detection results. In the third chapter, we present a novel camera-based approach to automatically detect and recognize restroom signage from surrounding environments. Our method first extracts the attended areas which may content signage based on shape detection. Then, Scale-Invariant Feature Transform (SIFT) is applied to extract local features in the detected attended areas. Finally, signage is detected and recognized as the regions with the SIFT matching scores larger than a threshold. The proposed method can handle multiple signage detection. Experimental results on our collected restroom signage dataset demonstrate the effectiveness and efficiency of our proposed method. In the fourth chapter, we develop a new framework to detect and recognize stairs and pedestrian crosswalks using a RGBD camera. Since both stairs and pedestrian crosswalks are featured by a group of parallel lines, we first apply Hough transform to extract the concurrent parallel lines based on the RGB channels. Then, the Depth channel is employed to further recognize pedestrian crosswalks, upstairs, and downstairs using support vector machine (SVM) classifiers. Furthermore, we estimate the distance between the camera and stairs for the blind users. The detection and recognition results on our collected dataset demonstrate that the effectiveness and efficiency of our proposed framework Keywords: Blind people, Navigation and wayfinding, Camera, Signage detection and recognition, Independent trave

    MEDNC: Multi-ensemble deep neural network for COVID-19 diagnosis

    Full text link
    Coronavirus disease 2019 (COVID-19) has spread all over the world for three years, but medical facilities in many areas still aren't adequate. There is a need for rapid COVID-19 diagnosis to identify high-risk patients and maximize the use of limited medical resources. Motivated by this fact, we proposed the deep learning framework MEDNC for automatic prediction and diagnosis of COVID-19 using computed tomography (CT) images. Our model was trained using two publicly available sets of COVID-19 data. And it was built with the inspiration of transfer learning. Results indicated that the MEDNC greatly enhanced the detection of COVID-19 infections, reaching an accuracy of 98.79% and 99.82% respectively. We tested MEDNC on a brain tumor and a blood cell dataset to show that our model applies to a wide range of problems. The outcomes demonstrated that our proposed models attained an accuracy of 99.39% and 99.28%, respectively. This COVID-19 recognition tool could help optimize healthcare resources and reduce clinicians' workload when screening for the virus

    Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network

    Get PDF
    This paper proposes a hybrid classifier for polarimetric SAR images. The feature sets consist of span image, the H/A/α decomposition, and the GLCM-based texture features. Then, a probabilistic neural network (PNN) was adopted for classification, and a novel algorithm proposed to enhance its performance. Principle component analysis (PCA) was chosen to reduce feature dimensions, random division to reduce the number of neurons, and Brent’s search (BS) to find the optimal bias values. The results on San Francisco and Flevoland sites are compared to that using a 3-layer BPNN to demonstrate the validity of our algorithm in terms of confusion matrix and overall accuracy. In addition, the importance of each improvement of the algorithm was proven

    Binary Structuring Elements Decomposition Based on an Improved Recursive Dilation-Union Model and RSAPSO Method

    Get PDF
    This paper proposed an improved approach to decompose structuring elements of an arbitrary shape. For the model of this method, we use an improved dilation-union model, adding a new termination criterion, as the sum of 3-by-3 matrix should be less than 5. Next for the algorithm of this method, we introduced in the restarted simulated annealing particle swarm optimization method. The experiments demonstrate that our method can find better results than Park's method, Anelli's method, Shih's SGA method, and Zhang's MFSGA method. Besides, our method gave the best decomposition tree of different SE shapes including “ship,” “car,” “heart,” “umbrella,” “vase,” “tree,” “cat,” “V,” “bomb,” and “cup.

    UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm Optimization

    Get PDF
    Path planning plays an extremely important role in the design of UCAVs to accomplish the air combat task fleetly and reliably. The planned path should ensure that UCAVs reach the destination along the optimal path with minimum probability of being found and minimal consumed fuel. Traditional methods tend to find local best solutions due to the large search space. In this paper, a Fitness-scaling Adaptive Chaotic Particle Swarm Optimization (FAC-PSO) approach was proposed as a fast and robust approach for the task of path planning of UCAVs. The FAC-PSO employed the fitness-scaling method, the adaptive parameter mechanism, and the chaotic theory. Experiments show that the FAC-PSO is more robust and costs less time than elite genetic algorithm with migration, simulated annealing, and chaotic artificial bee colony. Moreover, the FAC-PSO performs well on the application of dynamic path planning when the threats cruise randomly and on the application of 3D path planning

    Deep learning in crowd counting: A survey

    Get PDF
    Counting high-density objects quickly and accurately is a popular area of research. Crowd counting has significant social and economic value and is a major focus in artificial intelligence. Despite many advancements in this field, many of them are not widely known, especially in terms of research data. The authors proposed a three-tier standardised dataset taxonomy (TSDT). The Taxonomy divides datasets into small-scale, large-scale and hyper-scale, according to different application scenarios. This theory can help researchers make more efficient use of datasets and improve the performance of AI algorithms in specific fields. Additionally, the authors proposed a new evaluation index for the clarity of the dataset: average pixel occupied by each object (APO). This new evaluation index is more suitable for evaluating the clarity of the dataset in the object counting task than the image resolution. Moreover, the authors classified the crowd counting methods from a data-driven perspective: multi-scale networks, single-column networks, multi-column networks, multi-task networks, attention networks and weak-supervised networks and introduced the classic crowd counting methods of each class. The authors classified the existing 36 datasets according to the theory of three-tier standardised dataset taxonomy and discussed and evaluated these datasets. The authors evaluated the performance of more than 100 methods in the past five years on different levels of popular datasets. Recently, progress in research on small-scale datasets has slowed down. There are few new datasets and algorithms on small-scale datasets. The studies focused on large or hyper-scale datasets appear to be reaching a saturation point. The combined use of multiple approaches began to be a major research direction. The authors discussed the theoretical and practical challenges of crowd counting from the perspective of data, algorithms and computing resources. The field of crowd counting is moving towards combining multiple methods and requires fresh, targeted datasets. Despite advancements, the field still faces challenges such as handling real-world scenarios and processing large crowds in real-time. Researchers are exploring transfer learning to overcome the limitations of small datasets. The development of effective algorithms for crowd counting remains a challenging and important task in computer vision and AI, with many opportunities for future research.BHF, AA/18/3/34220Hope Foundation for Cancer Research, RM60G0680GCRF, P202PF11;Sino‐UK Industrial Fund, RP202G0289LIAS, P202ED10, P202RE969Data Science Enhancement Fund, P202RE237Sino‐UK Education Fund, OP202006Fight for Sight, 24NN201Royal Society International Exchanges Cost Share Award, RP202G0230MRC, MC_PC_17171BBSRC, RM32G0178B

    Comparative miRNA Expression Profiles in Individuals with Latent and Active Tuberculosis

    Get PDF
    The mechanism of latent tuberculosis (TB) infection remains elusive. Several host factors that are involved in this complex process were previously identified. Micro RNAs (miRNAs) are endogenous ∼22 nt RNAs that play important regulatory roles in a wide range of biological processes. Several studies demonstrated the clinical usefulness of miRNAs as diagnostic or prognostic biomarkers in various malignancies and in a few nonmalignant diseases. To study the role of miRNAs in the transition from latent to active TB and to discover candidate biomarkers of this transition, we used human miRNA microarrays to probe the transcriptome of peripheral blood mononuclear cells (PBMCs) in patients with active TB, latent TB infection (LTBI), and healthy controls. Using the software package BRB Array Tools for data analyses, 17 miRNAs were differentially expressed between the three groups (P<0.01). Hierarchical clustering of the 17 miRNAs expression profiles showed that individuals with active TB clustered independently of individuals with LTBI or from healthy controls. Using the predicted target genes and previously published genome-wide transcriptional profiles, we constructed the regulatory networks of miRNAs that were differentially expressed between active TB and LTBI. The regulatory network revealed that several miRNAs, with previously established functions in hematopoietic cell differentiation and their target genes may be involved in the transition from latent to active TB. These results increase the understanding of the molecular basis of LTBI and confirm that some miRNAs may control gene expression of pathways that are important for the pathogenesis of this infectious disease

    Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm

    Get PDF
    This work proposes a tea-category identification (TCI) system, which can automatically determine tea category from images captured by a 3 charge-coupled device (CCD) digital camera. Three-hundred tea images were acquired as the dataset. Apart from the 64 traditional color histogram features that were extracted, we also introduced a relatively new feature as fractional Fourier entropy (FRFE) and extracted 25 FRFE features from each tea image. Furthermore, the kernel principal component analysis (KPCA) was harnessed to reduce 64 + 25 = 89 features. The four reduced features were fed into a feedforward neural network (FNN). Its optimal weights were obtained by Jaya algorithm. The 10 × 10-fold stratified cross-validation (SCV) showed that our TCI system obtains an overall average sensitivity rate of 97.9%, which was higher than seven existing approaches. In addition, we used only four features less than or equal to state-of-the-art approaches. Our proposed system is efficient in terms of tea-category identification
    corecore